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Near- and Mid-Infrared Diffuse Reflectance Spectroscopy
for Measuring Soil Metal Content

Grzegorz Siebielec, Gregory W. McCarty,* Tomasz I. Stuczynski, and James B. Reeves III

ABSTRACT purposes in diffuse reflectance applications: near-infra-
red (NIR, 400–2500 nm) and mid-infrared (MIDIR, 2500–Rapid and nondestructive methods such as diffuse reflectance infra-
25 000 nm). Both NIRS and DRIFTS are nondestructivered spectroscopy provide potentially useful alternatives to time-con-

suming chemical methods of soil metal analysis. To assess the utility rapid analyses that under common application require no
of near-infrared reflectance spectroscopy (NIRS) and diffuse mid- sample treatment except for grinding and mixing. Applica-
infrared reflectance spectroscopy (DRIFTS) for soil metal determina- tion of infrared techniques for metals determination would
tion, 70 soil samples from the metal mining region of Tarnowskie substantially simplify analyses and decrease their cost.
Gory (Upper Silesia, Poland) were analyzed by both chemical and There are data suggesting that infrared spectroscopy
spectroscopic methods. Soils represented a wide range of pH (4.0–8.0), (both NIRS and DRIFTS) combined with statistical trans-
total carbon (5.1–73.2 g kg�1), and textural classes (from sand to silty

formation of the data could feasibly be used for accurateclay loam). Soils had various contents of metals (14–4500 mg kg�1 for
prediction of various soil or manure parameters such asZn, 18–6530 mg kg�1 for Pb, and 0.17–34 mg kg�1 for Cd), ranging
total C, total N, or ammonia N (Reeves, 2001; Reevesfrom natural background levels to high contents indicative of industrial
et al., 2001). The technique is based on calibration equa-contamination in the region. Soil samples were scanned at the wave-

lengths from 400 to 2498 nm (near-infrared region) and from 2500 to tions produced for prediction of soil parameters using
25 000 nm (mid-infrared region). Calibrations were developed using chemical data from conventional analysis and spectral
the one-out validation procedure under partial least squares (PLS) data from scans in NIR or MIDIR regions. Basically,
regression. Mid-infrared spectroscopy markedly outperformed NIRS. regression analysis is used to extract the spectral informa-
Iron, Cd, Cu, Ni, and Zn were successfully predicted using DRIFTS. tion most related to the analyte in question (e.g., metal
The coefficients of determination (R2) between actual and predicted content). This results in what is known as the calibration
contents were 0.97, 0.94, 0.80, 0.99, and 0.96 for those metals, respec-

equation, which can then be used with new spectra totively. Only Pb content was predicted poorly. Calibrations using NIRS
determine the analyte values of samples without thewere less accurate. Root mean squared deviation (RMSD) values were
need for laboratory determinations.from 1.27 (Pb) to 3.3 (Ni) times higher for NIRS than for DRIFTS.

Near-infrared reflectance spectroscopy has been de-Results indicate that DRIFTS may be useful for accurate predictions
of metals if samples originate from one region. veloped as a routine technique in quantitative and quali-

tative determination of various parameters in the food,
agriculture, textile, petrochemical, and pharmaceutical
industries. Near-infrared spectroscopy gives informa-Detailed monitoring of trace metals content in soils
tion on the structure of organic matter since it is basedis needed, especially in regions under present or
on absorbance bands for bonds between C or O and H,former influence of industrial activities due to the ele-
and N and H found in proteins, cellulose, carboxyl, amide,vated risk of metal transfer to the food chain. Recogni-
or amino acids, etc. (Malley, 1998). More or less quanti-tion of soil metals status in such areas forms a basis for
tative use of NIRS for determination of physical, chemi-appropriate land use, including indication of “risk spots”
cal, and biological soil properties such as moisture; totalthat should be excluded from agricultural food and fod-
C, N, and P contents; mineral N; quality of organicder production or subject to remediation. Databases
matter; and biological parameters of soil such as respira-and maps are produced by spatial analysis of metals
tion and microbial biomass has been demonstrated (Palm-content in geo-referenced samples. Such regional-scale
borg and Nordgren, 1993; Fritze et al., 1994; Chodak etmonitoring programs usually require analysis of great
al., 2002; Confalonieri et al., 2001; Slaughter et al., 2001;numbers of soil samples with limited resources. Conven-
Smith et al., 2001; McCarty et al., 2002). Near-infraredtional methods of metals determination in soil are based
spectroscopy has been also used to predict trace metalon wet digestion of soil samples in hot concentrated
content in sediments or soils (Malley and Williams, 1997;acids followed by inductively coupled plasma or atomic
Kemper and Sommer, 2002). Malley and Williams (1997)absorption spectrometric (AAS) measurements of met-
obtained accurate predictions of metals such as Fe, Mn,als in extracts (Hossner, 1996), and are time-consuming
Zn, Cu, Pb, and Ni in freshwater sediments despite lowand expensive.
contents of some of them (Zn � 60 mg kg�1, Cu �Two spectral ranges are generally used for analytical
50 mg kg�1, Pb � 45 mg kg�1, and Ni � 30 mg kg�1).
Normalizing parameters that the authors used were

G. Siebielec and T.I. Stuczynski, Institute of Soil Science and Plant standard deviation of predicted set/standard error of pre-
Cultivation, Pulawy, Poland. G.W. McCarty and J.B. Reeves III, diction (RPD) and range/standard error of predictionUSDA-ARS, Environmental Quality Laboratory, Beltsville, MD
20705. Received 16 July 2003. *Corresponding author (mccartyg@

Abbreviations: DRIFTS, diffuse mid-infrared reflectance spectros-ba.ars.usda.gov).
copy; MIDIR, mid-infrared; NIR, near-infrared; NIRS, near-infrared
reflectance spectroscopy; NRMSD, normalized root mean squaredPublished in J. Environ. Qual. 33:2056–2069 (2004).

© ASA, CSSA, SSSA deviation; PLS, partial least squares; RMSD, root mean squared de-
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(RER), which were indicative of effective calibrations of NIRS and DRIFTS to predict trace metal contents
in diverse mineral soils and assess their potential utilityfor those metals. The worst calibration was produced

for Cd, which was artificially added to lake water several for estimating metal contamination in soils at regional
levels.years before the sample collection. Different behavior

of the latter metal was attributed to its shorter time in
the lake and its different association with inorganic and MATERIALS AND METHODSorganic components as compared with other metals

Sample Collection(Malley and Williams, 1997). The sediment samples var-
ied widely in organic matter content (2–425 g C kg�1). Seventy geo-referenced samples were collected from arable
Kemper and Sommer (2002) used NIRS to produce lands of the Tarnowskie Gory area in Poland. Approximately
calibrations for predictions of trace elements in soils 1-kg soil samples were removed from the 0- to 20-cm layer
contaminated by high metal sludge after a mining acci- using a soil core sampler. Sampling sites were located in 10

districts of Tarnowskie Gory: Strzybnica, Rybna, Tarnowicedent in Aznalcollar, Spain. They obtained very accurate
Str, Repty, Sowice, Bobrowniki, Miasteczko Slaskie, Zyglin,predictions of some trace elements (Pb, Hg) while re-
and Tarnowskie Gory town (Fig. 1). Soils were collectedsults for Zn, Cd, and Cu were not satisfactory. In the
throughout the region to ensure a wide range of soil propertiescase of forage crop analysis by NIR, the content of
such as organic matter or clay content as well as metals con-inorganic elements is low relative to the organic matrix
tents. Location of sampling points within districts was depen-so their direct influence on NIR spectra may not be dent on distribution of arable parcels.

significant. Thus, successful calibrations for inorganic Tarnowskie Gory is a metal mining area located in the
components in forage crops could be based on the ef- central part of the Silesia (Slaskie) administrative region (voi-
fects of the inorganic material with the organic constit- vodship), which is the most industrialized region of Poland
uents, or even due to correlations between the two, and (for depiction of this region see Fig. 1). Tarnowskie Gory area

is one of the most contaminated parts of that region. Thethus are often called surrogate calibrations (Shenk et
presence of Zn and Pb ores has lead to development of miningal., 1992). The effect of minerals on soil spectra in the
and smelting industries in the region around Tarnowskie Gory.NIR region is perhaps more important since content of
Ore mining activities in the area were started in the 12thmineral fraction in dry matter of mineral soils is more
century, and soils in the region were subjected to strong indus-than 90%.
trial emissions especially in second half of the 20th century.Mid-infrared spectroscopy detects both absorbance The biggest mine in the area was located near the town of

by organic bonds and mineral components. The tech- Tarnowskie Gory in the southwest direction, and a Zn ore
nique has been extensively used for qualitative analysis smelter is located in Miasteczko Slaskie. Prevailing winds in
by spectral interpretation (Colthup et al., 1990) and the region are from the northeast, and soils within the study
more recently for quantitative analysis of a wide range of area were undoubtedly under the influence of smelter emis-

sions. Tarnowskie Gory town was a center of various typesagricultural materials including grain, forages, manures,
of industrial production. However, contamination in the Tar-and soils (Janik and Skjemstad, 1995; Reeves, 1996, 2001;
nowskie Gory area is of a complex character since soils of theReeves et al., 1999, 2001). The reason for the recent use
area were partly developed from shallow and metal-rich triasof DRIFTS for quantitative analysis of such products
limestones and due to the occurrence of ore outcrops mixedwas a belief that dilution of samples with KBr was neces-
with topsoil.sary, which has been shown not to be true (Reeves, 2003).

Mid-infrared spectroscopy has been used for quantita-
Chemical Analysestive analyses of soil chemical parameters less frequently

than NIRS. Recent studies have shown its utility for deter- Soil samples were air-dried, crushed, sieved through a 1-mm
mesh, and homogenized. The �1-mm fraction amounted tomination of nitrates (Ehsani et al., 2001) and total carbon
98 to 99% of the total soil weight. Subsamples of these soilsand nitrogen contents (Reeves et al., 2001; McCarty et
were then ground using a roller mill for analyses of C, traceal., 2002).
metals, and spectroscopy. Total contents of Zn, Pb, Cd, Cu,There is little data available to compare the utility of
Ni, and Fe were determined. Total contents of Zn, Pb, Cd,NIRS and DRIFTS calibration models developed for
Cu, Ni, and Fe were analyzed using the aqua regia digestionsoils with diverse properties. Often NIRS calibrations procedure (2 h hot digestion in 1:3 v/v mixture of concentrated

have been developed using sets of soil from the same nitric and hydrochloric acids, followed by refluxing in 3 M
origin or similar chemical and physical characteristics. hydrochloric acid) (McGrath and Cunliffe, 1985). Filtrates
Good predictions with such sets of samples can be due were analyzed by atomic absorption spectroscopy. Quality
to a wide range of the predicted parameter with much control included duplication of every 10th sample and analysis

of soil reference materials (SRM) every 20 samples: NISTless variability of other soil parameters. The crucial
2709 (baseline metals contents) and NIST 2710 (highly ele-question for utility of chemometric methods is whether
vated metal contents) (National Institute of Standards andthey provide accurate predictions for sets of diverse
Technology, Gaithersburg, MD). The measured contents ofsoils. In a study conducted by McCarty et al. (2002),
metals in NIST reference materials were within the requiredMIDIR calibrations performed significantly better than
range. Precision of analysis was defined as percentage relativeNIR calibrations for the determination of total C con- standard deviation (RSD � SD/mean of SRM replicates). The

tent. To our knowledge, this study is the first attempt precision was 4.0 and 1.4% (Fe), 7.6 and 1.9% (Cd), 1.9 and
to compare NIRS and DRIFTS feasibility in measuring 2.7% (Cu), 4.9 and 1.3% (Pb), 2.4 and 2.7% (Ni), and 2.8 and
metal contents in diverse soils. 1.5% (Zn) for NIST 2709 and NIST 2711, respectively.

Soil pH was measured in a water slurry with 1:2 v/v soil toThe objective of this study was to compare the ability
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Fig. 1. Location of 70 sampling sites within Tarnowskie Gory region, Poland. Samples marked as empty dots, triangles, and squares are outliers
in near-infrared (NIR), mid-infrared (MIDIR), or both NIR and MIDIR calibrations, respectively, for at least two metals.

particle-size differences, which cause differing degrees of scat-solution ratio. Total C content was measured using a carbon–
ter among the sample set. The coarser the sample, the deepernitrogen–sulfur (CNS) combustion analyzer (LECO, St. Jo-
the radiation penetrates, which causes a baseline shift up andseph, MI). Soil particle size distribution was performed by the
down. In all cases, the number of PLS factors used in thehydrometer method (Gee and Bauder, 1986).
calibration was determined by the prediction residual error
sum of squares (PRESS) F statistic from the one-out crossSpectral Measurements validation procedure. The best model was selected as follows:

Near-infrared spectra were obtained using a NIRSystems (i) for each math treatment the number of factors was selected
Model 6500 scanning monochromator (Foss-NIRSystems, Sil- by an F test (i.e., to determine if adding an additional factor
ver Spring, MD). Samples (5 g) were scanned from 400 to significantly reduced the error, with a maximum of 15 factors
2498 nm using a rotating cup. Data were collected every 2 nm ever being used); (ii) then the model with the lowest root
at a resolution of 10 nm. Samples (0.5 g) were scanned in the mean squared deviation (RMSD) was chosen out of various
mid-infrared region from 4000 to 400 cm�1 (2500 to 25 000 math treatments; and (iii) once the optimal math treatment
nm) at 4 cm�1 resolution with 64 co-added scans per spectra, and number of PLS factors was determined, a final calibration
on a DigiLab FTS-60 Fourier transform spectrometer (Bio- was developed (Martens and Naes, 2001).
Rad, Richmond, CA) equipped with a custom-made sample The cross-validation procedure involves removal of each
transport that allowed a 50- � 2-mm sample to be scanned sample from a set and development of a calibration equation
(Reeves, 1996). from that set with prediction of values for the removed sample.

This process is repeated for each member of the set resulting
in the generation of a prediction set where each member hasStatistical Analyses and Calibrations
been treated as being independent of a calibration set. Cross-

Descriptive statistics were calculated using SAS data analy- validation analysis provides information on the robustness of
sis software (SAS Institute, 1988). All regression of NIRS and calibration. Calibrations were produced for entire data sets
DRIFTS data was performed by partial least squares (PLS) and after removal of calibration outliers. Pearson’s correlation
regression using Grams/386 PLSPlus software Version 2.1G coefficients, based on ordinary least squares regression (OLS),
(Galactic Industries, 1992). The PLS analysis is a factor-based were calculated to evaluate the significance of relationships
calibration similar to principle component regression (PCR) between soil variables (Table 1).
but produces a set of factors (model) correlated to a particular
property of interest. The PLS produces factors that may or
may not be directly related to spectral features associated with RESULTS AND DISCUSSION
the specific physical or chemical properties for samples. Linear

Chemical Propertiescombinations of these weighted factors form the model for
prediction of the property of interest. Efforts using a variety Soils collected throughout the Tarnowskie Gory area
of data subsets, spectral data point averaging, derivatives (1st represented a wide range of major properties such asand 2nd), and other data transformations (mean centering,

pH, organic matter, and clay content (Fig. 2). Soils werevariance scaling, multiplicative scatter correction, and baseline
acidic to alkaline (pH 4.0–8.0). Soils had generally mod-correction) were performed to determine the best data trans-
erate contents of C, although high organic matter soilsformation for each assay (Geladi et al., 1985).

Multiplicative scatter correction adjusts for influence of were also present (developed as an effect of shallow
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Table 1. Correlation matrix for relationships between soil proper- A decreasing content of metals with depth in the soil
ties and metals contents. profile (Witek et al., 1992) suggests a major role of

C pH Clay Fe Cd Cu Pb Ni industrial activities in soil contamination. Undoubtedly,
metals in these soils also partly originate from pedogenicC
sources—parent rock material rich in metals and orepH 0.29*

Clay 0.31* 0.38** outcrops that were mixed with topsoil during years of
Fe 0.43** 0.33* 0.90*** soil cultivation (Witek et al., 1992). Significant areas ofCd 0.60*** 0.51*** 0.77*** 0.79***

soils with elevated contents of metals in Silesia are usedCu 0.75*** 0.29* 0.41** 0.57*** 0.56***
Pb 0.52*** 0.24 0.69*** 0.83*** 0.63*** 0.59*** for agricultural production and hobby gardening re-
Ni 0.58*** 0.46*** 0.90*** 0.95*** 0.84*** 0.63*** 0.77*** sulting in notable levels of human exposure to heavyZn 0.49*** 0.43** 0.82*** 0.88*** 0.90*** 0.52*** 0.75*** 0.85***

metals (Gzyl, 1990). Total Zn, Pb, and Cd contents are
* Significant at the 0.05 probability level. strongly intercorrelated in these soils (Table 1) as a** Significant at the 0.01 probability level.

result of their common pedogenic source and the likely*** Significant at the 0.001 probability level.
consistent metal ratios in dusts emitted by smelters

ground water). Soils had various textures from sand to (Niec, 1997). Soils with the highest Zn content also
silty clay loam, but most soils were sandy loams or silty had high contents of Pb and Cd and were located in
loams. The majority of soils in the sampling area devel- Tarnowskie Gory and Bobrowniki (Fig. 1). High con-
oped from sandy or light loamy materials of glacial tamination of soils in the proximity of Tarnowskie Gory
origin. Sandy and loamy soils occupy about 50 and 25% is mostly related to mining operations and occurrence
of arable soils of Upper Silesia, respectively (Dudka of shallow ore outcrops.
et al., 1995). Approximately 10% of the soils in the A substantial fraction of metals in Bobrowniki soils
Tarnowskie Gory area developed from limestone for- is of natural origin. These soils were developed from
mations (Witek et al., 1992). metal-rich limestone formations. Soil pH for these sam-

Total Zn, Pb, and Cd contents in soils collected from ples ranged from 7.3 to 7.5. Metals in these soils are
the Tarnowskie Gory vicinity range from levels recog- weakly available being precipitated as carbonates. Soils
nized as background content to highly contaminated (Fig. of Repty were also substantially contaminated. The soil
3). Mean contents of these three metals in soil samples cover of the district is diverse but mainly includes soils
collected in a national survey program (Terelak et al., developed from glacial loamy materials or trias lime-
1997) were 32.4, 13.6, and 0.21 mg kg�1 for Zn, Pb, and
Cd, respectively, which are markedly lower than mean
and even median contents in our study.

The Silesia region is an industrial area known for
centuries as a site of mining and smelting of Zn and
Pb ores. Industrial activities, especially intensive in the
1960s and 1970s, resulted in enrichment of Silesian soils
with Zn, Pb, and Cd due to emission of smelter dusts.

Fig. 3. Summary statistics for total metal contents in soils collectedFig. 2. Summary statistics for selected properties of soils collected in
Tarnowskie Gory region. Error bars are presented with median in Tarnowskie Gory region. Error bars are presented with median

(solid line), mean (dash line), 10th and 90th percentiles (whiskers),(solid line), mean (dash line), 10th and 90th percentiles (whiskers),
and all samples with property values outside 10th and 90th percen- and all samples with metal content outside 10th and 90th percen-

tiles (dots).tiles (dots).



R
ep

ro
du

ce
d 

fr
om

 J
ou

rn
al

 o
f E

nv
iro

nm
en

ta
l Q

ua
lit

y.
 P

ub
lis

he
d 

by
 A

S
A

, C
S

S
A

, a
nd

 S
S

S
A

. A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

2060 J. ENVIRON. QUAL., VOL. 33, NOVEMBER–DECEMBER 2004

stone formations. The metals in soils of Miasteczko supposition is supported by the fact that the mean con-
tents of these metals in our study were only slightlySlaskie mainly originate from slag emissions. The con-

tents of Zn and Pb are high; however, metals are strongly higher than mean contents for the Silesian soils, which
are 13.3 and 11.2 mg kg�1 for Ni and Cu, respectivelyadsorbed in soils with high clay or organic matter. Neu-

tral and alkaline pH of soils is probably an effect of (Terelak et al., 1997).
All metals contents, except Cu, were strongly depen-emissions of smelter dusts since no limestone formations

were present in parent rock material. Surprisingly, metal dent on clay content (Table 1) resulting from the greater
sorption capacity of soils richer in clay. Such soils havecontents in Zyglin are much lower, which might be re-

lated to weak sorption properties of these light, acidic greater ability to accumulate air-borne metals as op-
posed to sandy soils that have metals moved deeper insoils. Zinc, Pb, and Cd contents were moderate in Rybna,

Strzybnica, Sowice, and Tarnowice Str. Zinc content in the soil profile. Furthermore, finer-textured soils gener-
ally contain more metals of natural origin than sandythese soils generally ranged between 100 and 300 mg

kg�1. Soils in these districts were diverse, being mainly soils (Kabata-Pendias and Pendias, 2001). Copper was
the only metal strongly correlated with soil organic car-developed from sandy or loamy materials, although calcic

cambisol (Tarnowice Str.) and high organic soils (Rybna) bon content, which reflects the affinity of this element
for organic matter (Kabata-Pendias and Pendias, 2001).were also present. The least contaminated soils were

located in Pniowiec where metal contents were found Copper was also weakly correlated with the contents of
other metals (Table 1). Iron is not a metal posing anyat natural background levels.

Nickel and Cu contents in Silesian soils are not as environmental risk. However, Fe was included because
its determination might be useful for certain purposes;high as Zn, Pb, and Cd according to pollution criteria

since no significant sources of contamination were lo- for example, Fe content in soil may affect bioavailability
of other metals due to their occlusion by or adsorptioncated in the region (Terelak et al., 1997; Kabata-Pendias

and Pendias, 2001). The presence of Ni and Cu in soils on Fe oxides (Bruemmer et al., 1988).
within the area of interest has mainly a natural character
and probably originated from pedogenic sources. This Spectra

Near-infrared spectra were visually featureless show-
ing only three very low bands over the spectral range
most likely reflecting moisture-related absorption fea-
tures (Fig. 4). However, derivative spectra (not shown)
calculated from such data contain substantially more
features on which calibrations can be based. Mid-infra-
red spectra, on the other hand, had significantly greater
absorption values and had a greater number of features
from 2400 to 500 cm�1. Absorption bands in MIR are
generally caused by fundamental molecular vibrations.
Spectra of samples had generally similar shape within
either spectral range (NIR or MIDIR), but had signifi-
cantly different peak intensities. It may be found that
the same type of chemical information is present in both
the MIR and NIR spectral regions with the MIR spectra
comprised largely of sharp bands from fundamental
modes of vibration and NIR comprised of the muted
overtones.

A standard use of mid-infrared spectral data has in-
volved interpretation of spectral features for assessment
of chemical structure and qualitative measure of sample
composition. In the case of metal composition, the liter-
ature documents several spectral signatures associated
with a large array of organometallic complexes (for re-
view, see Nakamoto, 1997), which may occur in associa-
tion with soil organic matter. Additionally, there is con-
siderable information available on spectral signatures
of various metal-containing minerals commonly found
in soils and the technique has been used extensively in
mineralogical studies of soil (Farmer, 1974). The emerg-
ing use of mid-infrared spectral data has been for quanti-
fication of sample properties by application of chemo-
metrics. The use of chemometrics for quantification does
not depend on a full understanding of the physical rela-
tionship between spectral data and chemical functional
groups. Rather, it is based on mathematical relation-Fig. 4. Near-infrared (NIR) and mid-infrared (MIDIR) spectra of two

samples selected at random from the data set. ships between spectra and reference data. The reliability
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of such predicted data can be assessed by use of cross- a low R2 between actual (chemically determined) and
validation protocols. Although the gap in spectral un- predicted contents. Predictions for Cu had a tendency
derstanding may be disconcerting for some researchers, to underpredict higher contents (more than 15 mg kg�1)
the use of chemometrics for real-world applications has and overpredict lower contents (less than 10 mg kg�1)
proven to be immensely successful (Williams and Norris, (Fig. 5). The tendency for under prediction was also
2001). There is considerable risk in speculating on which observed for Zn and Cd at the higher contents probably
spectral features that a multifactor PLS model uses for due to industrial contamination (Fig. 5). This fact may
accurate predictions. reduce the usefulness of NIR as a tool for indicating the

most contaminated soils. Most samples with Pb contents
Near-Infrared Reflectance below 1000 mg kg�1 were overpredicted, which was in-
Spectroscopy Calibrations dicated by a low slope and large positive intercept

(Table 2). The Pb predictions for more contaminatedCalibrations produced for total Cd, Cu, Pb, and Zn
using NIRS were not satisfactory because there was samples were inaccurate (Fig. 5). Calibrations were bet-

Fig. 5. The relationships between values measured by the standard procedure and predicted using near-infrared reflectance spectroscopy (NIRS).
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Table 4. Calibration results based on mid-infrared (MIDIR) spectra.Table 2. Calibration results based on near-infrared (NIR) spectra.

Metal F† PRE‡ R2 Slope Intercept RMSD§ NRMSD¶ Metal F† PRE‡ R2 Slope Intercept RMSD§ NRMSD¶

Fe 6 MSC 0.97 0.97 0.60 4.1 0.18Fe 7 MV 0.87 0.87 3.01 9.2 0.40
Cd 3 MSC 0.54 0.54 2.56 5.13 0.92 Cd 7 MV 0.94 0.94 0.32 1.82 0.33

Cu 9 MSC 0.80 0.80 4.32 7.52 0.36Cu 6 M 0.61 0.61 8.15 10.3 0.49
Pb 3 MSC 0.45 0.45 286.9 839 1.61 Pb 5 MSC 0.66 0.66 178.7 662 1.27

Ni 14 – 0.99 0.98 0.29 1.88 0.09Ni 7 M 0.84 0.84 3.12 6.21 0.29
Zn 4 MSC 0.67 0.67 207.0 526 0.84 Zn 13 MV 0.96 0.96 27.3 191 0.30

† Number of factors. † Number of factors.
‡ Spectral transformation. MV, mean and variance scaled; MSC, multipli-‡ Spectral transformation. MV, mean and variance scaled; MSC, multipli-

cative scatter corrected; M, mean centered only. cative scatter corrected; M, mean centered only.
§ Root mean squared deviation.§ Root mean squared deviation.

¶ Normalized parameter (NRMSD � RMSD/mean). ¶ Normalized parameter (NRMSD � RMSD/mean).

ter for Fe and Ni. However, their R2 values were still (Fig. 6). The RMSD values were substantially lower
below 0.9 (Table 2). A normalized parameter, NRMSD for DRIFTS calibrations (Tables 2 and 4). The most
(root mean squared deviation divided by mean of metal significant differences in accuracy of predictions be-
content; NRMSD � RMSD/mean) was used to compare tween MIDIR and NIR were for Cd, Zn, and Ni in
accuracy of predictions for different metals that have which RMSD decreased 2.75, 2.81, and 3.30 times, re-
different magnitudes of content. The NRMSD values spectively. Comparison of the distribution of PLS resid-
were the lowest for Ni and Fe: 0.29 and 0.40, respectively, ual errors for MIDIR and NIR calibrations shows sub-
indicating the best accuracy of predictions (Table 2). stantially narrower spread of residuals for MIDIR for

Samples poorly determined during the one-out cross- all predicted metals (Fig. 7). The much lower intercept
validation process are often called calibration outliers. values (Tables 2 and 4) indicate more accurate predic-
These outliers can be defined when (i) the sample is tions using MIDIR for samples with lower metal con-
spectrally different than the rest of the samples and (ii) tents. The most accurate MIDIR calibrations were pro-
the predicted content value is determined to have a duced for Cd, Fe, Ni, and Zn with NRMSD values from
residual difference significantly greater than those of 0.09 to 0.33 (Table 4, Fig. 6). The R2 value for Cu was
other samples. In either case, the basis for the calibration lower than for the latter metals. However, the NRMSD
outliers can be due to true sample differences, for exam- value was only slightly worse (0.36), which indicates anple, a single sample with an analyte level much greater accurate prediction for this metal (Table 4). Only Pbor lower than the rest of the dataset or due to errors or contents were still not predicted satisfactorily usinga poorly determined analyte value by standard chemical MIDIR including most of the highly contaminated sam-analysis. Removal of calibration outliers in most cases

ples (Fig. 6). No relationship between chemically mea-leads to improvement of predictions for samples remain-
sured metal contents and residuals was observed foring in the data set since calibrations are not burdened
DRIFTS (Fig. 8). Removal of calibration outliers im-with less useful information. The algorithms within the
proved predictions for Pb with RMSD decreasing fromGrams software (Galactic Industries, 1992) were used
662 to 142 mg kg�1. Predictions for Cd, Ni, and Zn wereto identify and remove calibration outliers based on
not improved most likely due to loss of some usefulcontent and new calibrations were then developed. The
information linked to the removed samples (Tables 4removal of outlier samples from the data set improved
and 5).accuracy of predictions for Cd, Cu, Fe, Pb, and Zn

The advantage of DRIFTS is probably related to(RMSD significantly decreased for those metals; Tables
more information existing in the mid-infrared region.2 and 3). Only prediction models for Fe had R2 values
Absorption bands in the MIDIR originate from funda-above 0.9 and R2 for the Ni model increased from 0.77
mental vibrations while absorption spectra in NIR areto 0.84 although its RMSD did not greatly improve
basically overtones and combination bands (Ibanez and(Tables 2 and 3).
Cifuentes, 2001). In the analysis of organic substances
such as forage, near-infrared spectra are known to beDiffuse Mid-Infrared Reflectance
overtones and combination bands due to O–H, N–H,Spectroscopy Calibrations
and C–H bonds of soil organic matter with no absorption

Calibrations produced with MIDIR data performed bands due to mineral components (Shenk et al., 1992).
substantially better than those with NIR for all metals Mid-infrared spectra contain the fundamental organic-

related bands but also vibrations related to inorganicTable 3. Calibration results based on near-infrared (NIR) spectra
components, including anions such as phosphate andafter removal of calibration outliers.
carbonate that absorb within the MIDIR region. Thus,Metal F† Samples removed R2 RMSD‡ Range§
there are more bands directly affected by metals in

Fe 9 13, 14, 15, 35, 44 0.94 3.7 2.2–90.0 MIDIR and bands directly due to their salts, which mayCd 5 1, 10, 14, 24, 35 0.80 2.54 0.17–30.3
not be present in the NIR.Cu 7 14, 15, 32, 38, 57 0.75 6.01 2.2–66.5

Pb 5 13, 14, 15, 16, 20, 35 0.76 159 8.3–1583 The strong absorption in the MIDIR range from spec-
Ni 4 13, 14, 44, 50, 57 0.77 6.01 1.7–55.7 tra of undiluted samples has previously been recognizedZn 6 13, 24, 35 0.84 299 14.7–3300

as a factor limiting application of DRIFTS to predict
† Number of factors. sample parameters. Dilution of samples with KBr con-‡ Root mean squared deviation.
§ Metal content range after removal of outliers. sumes time and significantly increases the cost of analy-
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Fig. 6. The relationships between values measured by the standard procedure and predicted using diffuse mid-infrared reflectance spectros-
copy (DRIFTS).

sis and would obviate the advantages of spectroscopic low over the entire range of spectra (Fig. 9). This fact
does not strictly correspond to final calibration resultstechniques such as quickness and low cost. However,

several studies have demonstrated that accurate calibra- because the best calibrations were produced for Fe and
Ni. High correlation coefficients for MIDIR spectrations with MIDIR spectra can be developed without

sample dilution (Nguyen et al., 1991; Reeves et al., 2001; were observed in many wavelengths over the entire
spectral range and were the highest for Fe and Ni, whichMcCarty et al., 2002; Reeves, 2003).

The correlation coefficients between absorbance and also produced the best MIDIR calibrations (Fig. 10).
Interestingly, Pb was not predicted as well as Zn andmetal content over the spectral range are shown in Fig. 9

(NIR) and Fig. 10 (MIDIR). Correlation coefficients Cd despite having very similar correlation results to
those metals (Fig. 9 and 10), which could indicate that(r) for NIR reached high values (above 0.6) at three

ranges of wavelengths: 490 to 580 nm (positive correla- the same information was used for calibration equations
produced for those three metals.tion), 795 to 830 nm (negative), and 1040 to 1210 nm

for Cd, Zn, and Fe. Coefficients for other metals were The coefficients of determination between actual and
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predicted metal content and RMSD values in our study for at least two metals are indicated in Fig. 1. Most of
based on one-out cross validation provide strong evi- those samples were located near Tarnowskie Gory and
dence that samples not used in the calibration set might had extreme properties: high organic matter (Samples
be predicted accurately (Table 6). One-out cross-valida- 14, 15, 57), high Fe (Samples 13, 14, 15), or high clay
tion predictions for each sample are based on equations content (Sample 13). Removal of outliers of NIR cali-
produced using all other samples from the data set. brations significantly narrowed the predicted range of

metal contents, especially for Pb and Zn, since the most
Characteristics of Calibration Outliers contaminated soils were within removed samples (Ta-

ble 3, Fig. 3). Mid-infrared-based calibrations exhibitedIn most cases, the same samples were classified as
better ability to predict metal contents in extreme sam-calibration outliers in NIR calibrations for particular
ples. Only Sample 35 was the outlier for five metals.metals, for example, Sample 14 (five metals), Samples
Other samples listed above appeared randomly. Sample13 and 35 (four metals), and Sample 15 (three metals).

The locations of samples that were calibration outliers 35 was collected in Miasteczko Slaskie. This sample

Fig. 7. Residual error distribution for diffuse mid-infrared reflectance spectroscopy (DRIFTS) and near-infrared spectroscopy (NIRS). Units
for Cd, Cu, Ni, Pb, Zn are mg kg�1; for Fe, g kg�1. Dashed lines indicate standard deviations.
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might have been spectrally different due to high Fe maximum content of the entire sample set (Table 5,
Fig. 3).content or greater contribution of dust-borne metals in

the total pool of metal in a soil as an effect of close The outlier samples described were outside the do-
main of properties typical to the overall population ofdistance to the zinc smelter. However, other samples

collected in Miasteczko Slaskie were not defined as out- collected samples. Most of the outliers were clustered
to the south of Tarnowskie Gory. It is possible thatliers. The MIDIR calibrations were also much better

for prediction of the most contaminated soils. They were larger representation of such samples would let one
produce calibrations predicting even those samples ac-not removed as outliers, except two samples with the

highest Pb content. The maximum predicted content for curately. The 70 soils used in the study certainly did not
fully cover the diversity of soil properties for arableother metals after removal of outliers was equal to the

Fig. 8. The relationships between metal content measured by the standard procedure and residuals using diffuse mid-infrared reflectance
spectroscopy (DRIFTS).
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Table 5. Calibration results based on mid-infrared (MIDIR) spec- prediction. In the NIR and especially in the MIDIR
tra after removal of calibration outliers. region there is a clear relationship between soil texture

Metal F† Samples removed R2 RMSD‡ Range§ and accuracy of predictions observed for all metals ex-
cept Fe, which was predicted well over the entire rangeFe 6 15, 23, 35, 69 0.98 2.9 2.2–161.7

Cd 4 1, 10, 14, 24, 35 0.90 1.83 0.17–30.3 of clay content. In soils below 70 to 80 g of clay kg�1,
Cu 10 32, 38, 55 0.95 3.58 2.2–74.7 predictions of Cd, Zn, Cu, Ni, and Pb were more inaccu-Pb 7 13, 15, 16, 20, 35 0.86 142 8.3–1897

rate. Light, sandy soils are usually low in metals so theNi 5 14, 35, 44, 50, 64 0.94 3.48 1.7–74.3
Zn 3 16, 24, 35 0.93 225 14.7–4500 less accurate predictions in such samples do not reduce

the utility of the DRIFTS method for contaminated† Number of factors.
‡ Root mean squared deviation. soils.
§ Metal content range after removal of outliers. The reason for weaker predictions for coarser-tex-

tured soils is not clear. It might be due to weaker clay-lands of the Tarnowskie Gory region. However, it is also
related vibrations in such soils or different quality ofpossible that two separate equations might be needed.
organic matter in sandy soils. Furthermore, metals such
as Zn and Cd are in these soils mainly present as formsEffect of Soil Properties on Accuracy
immobilized by Fe oxides (Chlopecka et al., 1996) thatof Predictions
might be well detected in the MIDIR (Kemper and

As an example, the relationships between soil proper- Sommer, 2002). The higher the clay content in the soils
ties such as clay, carbon content, pH, and the accuracy studied the greater the percentage of Cd present in the
of metal predictions are presented on Fig. 11 for Zn. fraction absorbed by Fe-oxides (Siebielec, 2001). This
All samples including outliers are included. Accuracy
of prediction is expressed as percentage deviation from
actual content. Negative values indicate underpredic-
tion of actual content, and positive values indicate over-

Fig. 10. Correlation coefficients between mid-infrared (MIDIR) ab-Fig. 9. Correlation coefficients between near-infrared (NIR) absorbance
and metals content. sorbance and metals content.
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Table 6. One-out cross validation results based on mid-infraredsupports the hypothesis that more accurate metal pre-
(MIDIR) spectra for all samples (n � 70) and after removaldictions in finer-textured soils could have been due to of calibration outliers.

a stronger relationship between metals and Fe-oxides.
All samples After removal of outliers†Carbon content at the range observed for most soils

Metal R2 RMSD‡ R2 RMSDin our study (5.1–41.0 g kg�1) seemed not to affect the
accuracy of metal predictions in the MIDIR and NIR Fe 0.95 5.7 0.97 3.9

Cd 0.66 4.51 0.80 2.55region (Fig. 11). Zinc and other metals in samples with
Cu 0.63 10.1 0.79 7.15the highest carbon content (53.3–73.2 g kg�1) were pre-
Pb 0.49 812 0.73 196

dicted well in the MIDIR range if expressed as percent Ni 0.88 5.61 0.88 4.97
Zn 0.78 469 0.90 268accuracy. No relationships between soil pH and accu-

racy of predictions were observed for all measured met- † Outlier samples listed in Table 5.
‡ Root mean squared deviation.als (Fig. 11).

area seem to be important factors affecting calibrationCONCLUSIONS success. Larger sets of samples could improve overall
predictions but in certain cases two separate calibrationsMid-infrared spectroscopy exhibited potential utility

in detection of metal-contaminated soils. Results indi- might be needed to predict all samples accurately. Fu-
ture work with larger sets of samples is needed. Poorercate that MIDIR may be used for quantitative measure-

ments of metals in diverse soils if the calibration is predictions for particular samples may result from a
spectral difference in those samples or from inaccuratedeveloped from soils within the region. Proper and full

representation of soil types and properties of the studied chemical analyses.

Fig. 11. The relationships between soil properties and accuracy of metal predictions using mid-infrared (MIDIR) and near-infrared (NIR) data.
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element contamination of soils and crop plants by mining andIt is difficult to fully assess the potential accuracy of
smelting industry in southwest Poland. J. Geochem. Explor. 52:237–MIDIR spectroscopy. It is possible that the accuracy of
250.

the spectral calibration may be limited by analytical Ehsani, M.R., S.K. Upadhyaya, W.R. Fawcett, L.V. Protsailo, and D.
error of the chemical assays used to develop the calibra- Slaughter. 2001. Feasibility of detecting soil nitrate content using

a mid-infrared technique. Trans. ASAE 44:1931–1940.tion. However, a much larger number of samples analyz-
Farmer, V.C. (ed.) 1974. The infrared spectra of minerals. Mineralogi-able in MIDIR would provide more information at the

cal Soc., London.region or landscape level than traditional chemical Fritze, H., P. Järvinen, and R. Hiukka. 1994. Near-infrared characteris-
methods even if the technique was less accurate for tics of forest humus are correlated with soil respiration and micro-

bial biomass in burnt soil. Biol. Fertil. Soils 18:80–82.particular samples. In environmental assessments, the
Galactic Industries. 1992. GRAMS PLSplus Version 2.1G. Galacticuncertainty associated with spatial variance is often

Industries, Salem, NH.much greater than the uncertainty associated with ana-
Gee, G.W., and J.W. Bauder. 1986. Particle size analysis. p. 383–411.

lytical measurement. Calibrations based on chemical In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron.
data obtained for 200 to 300 samples may be used for Monogr. 9. ASA and SSSA, Madison, WI.

Geladi, F., D. MacDougall, and H. Martens. 1985. Linearization andpredictions of metal contents in perhaps thousands of
scatter-correction for near-infrared reflectance spectra of meat.other samples if the sample set used for calibrations was
Appl. Spectrosc. 39:491–500.representative for overall population. The rapid and Gzyl, J. 1990. Lead and cadmium contamination of soil and vegetables

low cost spectral analyses can enable more effective in the Upper Silesia region of Poland. Sci. Total Environ. 96:199–
environmental assessments. The method may be also 209.

Hossner, L.R. 1996. Dissolution for total elemental analysis. p. 49–64.useful for (i) indicating sites that should be analyzed
In D.L. Sparks et al. (ed.) Methods of soil analysis. Part III. Chemi-by classical methods at the locations of samples with
cal methods. ASA and SSSA, Madison, WI.predicted high metal content and (ii) indicating samples Ibanez, E., and A. Cifuentes. 2001. New analytical techniques in food

that should be re-run by standard chemical methods as science. Crit. Rev. Food Sci. Nutr. 41:413–450.
Janik, L.J., and J.O. Skjemstad. 1995. Characterization and analysispotentially inaccurately analyzed (i.e., samples that are

of soils using mid-infrared partial least-squares. II. Correlationsinaccurately predicted in a calibration set).
with some laboratory data. Aust. J. Soil Res. 33:637–650.Mid-infrared based calibrations substantially outper- Kabata-Pendias, A., and H. Pendias. 2001. Trace elements in soils

formed the more frequently used NIR. Mid-infrared and plants. 3rd ed. CRC Press, Boca Raton, FL.
based predictions were accurate both for metals with Kemper, T., and S. Sommer. 2002. Estimate of heavy metal contamina-

tion in soils after a mining accident using reflectance spectroscopy.high range of content from low to high contamination
Environ. Sci. Technol. 36:2742–2747.(Cd, Zn, Pb) and for metals at background level of

Malley, D.F. 1998. Near-infrared spectroscopy as a potential methodcontamination (Cu, Ni). Our results also confirm that it for routine sediment analysis to improve rapidity and efficiency.
is possible to obtain reliable calibrations using DRIFTS Water Sci. Technol. 37:181–188.

Malley, D.F., and P.C. Williams. 1997. Use of near-infrared reflectancefor diverse soils without sample dilution.
spectroscopy in prediction of heavy metals in freshwater sedimentSoil pollution with metals in the Tarnowskie Gory
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